Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

The definitions you must absolutely know for the exam:

- (a) A function, $f: X \to Y$
- (b) A function being injective
- (c) Composition of two functions
- (d) The pre-image/image of set under a function
- (e) The arbitrary union/intersection of sets
- (f) Equivalence relation on a set
- (g) The specific equivalence relation, congruence mod n, and the congruence classes of these

1. Let $f: X \to X$. Suppose f has the property, $f \circ f = id|_X$. That is $(f \circ f)(x) = x$ for all $x \in X$. Show f is an injection.

2. Let $f: X \to Y$. Given functions $g, h: W \to X$ such that whenever $f \circ g = f \circ h$, then g = h; show that f is injective.

3. Let $f: X \to Y$ and $V_{\alpha} \subseteq Y$ for every $\alpha \in A$ Show

$$f^{-1}\left(\bigcup_{\alpha\in A}V_{\alpha}\right) = \bigcup_{\alpha\in A}f^{-1}(V_{\alpha})$$

4. Let $f: X \to Y$ and $V_{\alpha} \subseteq X$ for every $\alpha \in A$ Show

$$f\left(\bigcup_{\alpha\in A}V_{\alpha}\right) = \bigcup_{\alpha\in A}f(V_{\alpha})$$

5. Let \sim be a relation on $X = \mathbb{Z} \times \mathbb{N}^+$ by $(a, b) \sim (c, d)$ if and only if ad = bc. Show \sim is an equivalence relation on X.

6. Let \sim be a relation on \mathbb{R} by $x \sim y$ if and only if |x| = |y|. Show \sim is an equivalence relation on \mathbb{R} .

7. What are the multiplication and addition tables for the congruence classes in $\mathbb{Z}/7\mathbb{Z}$.

8. What are the multiplication and addition tables for the congruence classes in $\mathbb{Z}/4\mathbb{Z}$.

9. Let $f: X \to Y$ and $V_{\alpha} \subseteq X$ for every $\alpha \in A$. Show that

$$f\left(\bigcap_{\alpha\in A}V_{\alpha}\right)\subseteq\bigcap_{\alpha\in A}f\left(V_{\alpha}\right)$$